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The dynamical reaction-diffusion Selkov system as a model describing the complex traveling wave behavior
is presented. The approximate amplitude-phase solution allows us to extract the base properties of the bio-
chemical distributed system, which determines such patterns. It is shown that this relatively simple model
could describe qualitatively the main features of the glycolysis waves observed in the experiments.
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I. INTRODUCTION

Glycolysis plays an important role in metabolism. It is
connected to many different biochemical pathways repre-
senting a complex metabolic network. Temporal oscillations
in glycolysis are one of the first types of metabolic rhythms
that have been studied intensively in experiment and numeri-
cal simulations �1–4�. Also spatiotemporal dynamics has
been observed in the yeast extracts, which is used as a model
system in most experiments because it is possible to investi-
gate the metabolic interactions on a subcellular level. It has
been shown that waves can be induced by local perturbation
on the activity of key enzyme, phosphofructokinase �PFK�
�5�. Since the propagation dynamics and shape of traveling
reaction-diffusion waves can contain information about the
state of the system, it has been suggested that they can play
an important role for biological information processing �5�.

Several theoretical models have been developed to char-
acterize the spatiotemporal dynamics in glycolysis �6,7�,
where various spatial patterns including propagating concen-
tration waves, target waves, and chaotic waves due to differ-
ent boundary or initial conditions have been observed.

To observe experimentally in detail the spatiotemporal
patterns in glycolysis, the open spatial reactor has been used
�5,8,9�. This reactor consisted of gel with yeast extract in
contact with stirred reactor where it is permanently injected
by substrates and cofactors for glycolysis. A permanent and
constant supply of substrates and cofactors of glycolysis to
the gel layer is provided by the diffusion of the substrates
and cofactors of glycolysis from the reactor chamber into the
gel. The spontaneous generation of traveling waves can be
observed after an initial time period of about 10 min. They
propagate from the border of the gel to the center �inward
waves� �5,8�. Also a spontaneous change in the direction of
wave propagation has been observed during one experiment
in spite of the fact that the controlled influx was not changed.
This leads to the generation of outwardly propagating waves
�9�. The duration of one experiment is around 6–10 h �5,8�.

Note that similar wave-antiwave exchange has been ob-
tained in the experimental �10� and theoretical �11� investi-

gations of the Belousov-Zhabotinsky reaction. However, the
phenomenon described in this work has another origin as it
will be discussed below.

Here we study the Selkov model �12� extended by diffu-
sion terms �13� for reproduction and explanation of wave
change direction described in experiment. It takes into ac-
count the PFK reaction in glykolysis, where the enzyme is
inhibited by the substrate x�r , t� and activated by the product
y�r , t�, where substrate influx � and product outflow w are
considered as parameters,

�tx = � − xy2 + D�r
2x ,

�ty = xy2 − wy + D�r
2y . �1�

The model without diffusion terms �local model� repro-
duces self-sustained oscillations in glycolysis observed in ex-
periment �2�. In dependence on parameter �, harmonic and
relaxation oscillations could be found.

In contrast to the developed models, we describe experi-
mentally observed data using an inhomogeneous influx ��r�
of the substrate in the distributed model. Using amplitude
phase representation helps us to understand mechanisms of a
spontaneous change in the direction of wave propagation in
experiments �9�.

II. RESULTS

It is convenient to rewrite the original Selkov system �1�
into new variables. First of all, we introduce u=�−wy and
z=x+y−z0, where z0=w2 /�−� /w. We assume that the diffu-
sion coefficients D are equal for both substances. The next
simplification follows from the experimental conditions.
Note that the first two derivatives of the function ��r� are
small over the whole region of the reaction. This allows us to
neglect spatial derivatives in system �1� and consider the
coordinate transform as a linear one consisting of only shifts,
rotation, and rescaling. Then, after summation of Eq. �1� and
substitution of these variables, we simply get

�tz = u + D�r
2z ,†postnicov@gmail.com
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�tu = 2��1 + c1u − c2u2�u − ���1 − �−1u��2z + D�r
2u , �2�

where �= �w−�2w−2� /2, c1= �3�−z0w� /2�w2, c2=w−2 /2�,
and �=� /�w.

This system can be considered as a kind of generalized
Rayleigh equation �14�: the dissipative term also consists of
the expansion up to the third power of velocity. But con-
versely to the classical form the square power is also kept.
Additionally, Eq. �2� maintains the first �linear on u� term in
the expansion of the frequency factor.

Let us start to analyze Eq. �2�. As a first step, we consider
a local model �D=0 and � has a fixed value�. It is easy to
show that if ��0 this system has an unstable equilibrium
point u1=0, z1=0. The existence of the negative cubic term
leads to the compensation of an unbounded growth. Thus,
there exists a stable limit cycle as an asymptotic solution in
this case.

In the case if � is a small parameter, a linear approxima-
tion of the system reduces it to the equation of harmonic
oscillations with the frequency �. To find an approximate
analytical solution of the local version of Eq. �2�, we use an
averaging method known as Krylov-Bogolyubov �KB�
scheme �15�. Namely, we consider the representation of the
solution in the form of simple harmonic function with vari-
able amplitude and phase.

Note that the strictly non-negative term 2�c1 plays a spe-
cial role. It provides unidirectional acceleration from the un-
stable stationary point. This leads to an asymmetry in the
limit cycle. The center of the cycle is shifted in the phase
plane. Also this term influences in cycle’s size. For this rea-
son we add a shift,

z�t� = A�t�cos��t − ��t�� + z0�A� ,

u�t� = − �A�t�sin��t − ��t�� .

In such a form, both variables actually are the decompo-
sitions in Fourier series �even and odd components� up to the
main frequency � only. And the first term of the even part of
Fourier expansion z0�A� plays a role of the slow amplitude-
depended mean value �a shift of the limit-cycle center�.

Both amplitude A and phase � are changing little during
the period of fast oscillations 2� /�. Thus, after averaging
with respect to this period, we get the following equations
for the slow amplitude and phase, which coincide formally
with the corresponding representation of the Ginzburg-
Landau equation,

dtA = �A�1 − k1
3c2

4
�2A2� , �3�

dt� = − k2
�3

8�2A2. �4�

We use the correcting factors k1=c2 /c1 and k2=2c1 /�c2 to
take into account an additional influence of unidirectional
acceleration discussed above on the limit-cycle radius and
phase shift.

Having these solutions, one can transfer back to the initial
concentration variables as x=w2�−1+w−1u+z, y=w−1�
−w−1u.

Let us consider two examples. We have chosen the param-
eter values as the boundaries between harmonic and relax-
ation oscillations. The initial conditions for both cases are
identical: A=0.05, �=0. Figure 1 represents the transition to
the limit cycle slightly below the critical value for Hopf bi-
furcation ��c=2.82�.

One can see that the approximate solution obtained by KB
method �Eqs. �3� and �4�� reproduces the exact one with the
high accuracy. The second case represented in Fig. 2 corre-
sponds to the oscillations close to relaxation ones. It is clear
from the sufficiently asymmetric shape of peaks. Naturally,
taking into account only first Fourier harmonic cannot repro-
duce such behavior. As a consequence the approximate solu-
tion deviates from the exact one in the region of the upper
maxima, where this asymmetry is most clear. Nevertheless,
the periods and phase of both solutions coincide quite well.

Note that the considered frequency of the main Fourier
harmonic � �as well as the phase shift �� sufficiently de-
pends on the influx parameter. Consequently, there will be a
difference in the motion of the near located even independent
oscillators with various values of �. This difference leads to
the picture, which looks like as a phase wave for the series of
oscillators.

Now let us consider distributed media described with the
full Selkov system �2�. In order to describe experimental data
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FIG. 1. The comparison of the approximate �solid line� and
exact �dashed line� solutions for the substrate concentration in the
local system. The parameters: w=2, �=2.8.
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FIG. 2. The comparison of the approximate �solid line� and
exact �dashed line� solutions for the substrate concentration in the
local system. The parameters: w=2, �=2.73.
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we assume the inhomogeneous influx and model it as a pa-
rabola ��r�=�0+4��b−�0��r−0.5�2, where �0 and �b are the
coefficients, defined maximum or minimum of parabola.
Such suggestion can be conditioned by the following: �1� the
substrate flux in the outer part of the reactor is laminar
enough and can be considered as the parabolic Poiseuille
flow; �2� even in more general case, there are weak distur-
bances of substrate percolation through the gel near the walls
of gel-contained cylinder; therefore one can take parabola as
the first small correction to the uniform influx. Thus, now
parameters �, c1, c2, and � depend on space coordinate.

Now substitute into Eq. �2� the amplitude-phase represen-
tation described by

z�r,t� = A�r,t�cos���r�t − ��r,t�� + z0�A� ,

u�r,t� = − ��r�A�r,t�sin���r�t − ��r,t��

and get after the averaging equations for amplitude and
phase dependent on space. These equations shape like Eqs.
�3� and �4� supplemented by spatial derivatives: �D /2�
��r

2A−A��r��2� will be added to Eq. �3� and �D /2�
��r

2�−�rA�r�� to Eq. �4�.
Here, it is very important to take into account that the

consideration of an inhomogeneous influx leads to a spatial
distribution in frequencies, where � depends on space coor-
dinate as ��r�=��r� /�w. Such spatial distribution in fre-
quencies allows us to obtain phase waves observed in experi-
ment.

We have solved equations for A�r , t� ,��r , t� numerically
where the coordinate r has changed within the interval �0,1�.
Zero fluxes have been used as boundary conditions. We have
chosen coefficients for parabola as �0=2.8 and �b=2.73. The
local oscillations for these values are considered in Sec. I
above. We have studied the influence of various initial re-
agent distributions on the wave dynamics. For simplicity, we
have changed the initial conditions for the amplitude and the
phase. We can obtain wave solutions propagating in one di-
rection for uniform initial conditions �Fig. 3 �left�� as well as
for initial concave upward distribution of phases. To obtain
the change in wave direction we should take initially a con-
cave downward function �for example, see Fig. 3 �right��.

In numerical simulations it is shown that the dynamical
behavior has a weak dependence on diffusion. This, it seems,
stands in contrast with the diffusion-driven waves and anti-
waves in the Belousov-Zhabotinsky �BZ� reaction �10,11�.
Thus, one can neglect the diffusion and consider the origin of
the wave reversal for fixed distribution of ��r� at the other
reasons. We return to Eqs. �3� and �4� with now space de-
pendent amplitude and phase, and we distribute space depen-
dent amplitude and phase depending on space ��r� and ��r�.
As a solution we obtain

��r,t� = �0�r� − k2
��r�3

8��r�2�
0

t

A2�r,t�dt . �5�

Here, the integral is a strongly monotonically negative
growing function; its growth rate is very sensible to the sub-
strate influx distribution ��r�. Since it has a maximum in the
center of interval, this corresponds to the minimum of the
phase change speed. The initial distribution �0�r� leads to
inwardly propagating waves. However, the described hetero-
geneous growth of the phase results in a flip of the phase
curve �see Fig. 4� �the phase change speed direction is de-
noted by arrows�. It leads to an appearance of outwardly
propagating waves.

To estimate the parameter requirement for the flip, let us
consider the simplest case when all distributed oscillators
reach the limit cycle �dA /dt=0�. Thereat, an amplitude,
which coincides with the radius of limit cycle, does not de-
pend on time. Consequently, substituting A2=4 / �3k1c2�2�
into Eq. �5�, we obtain the explicit expression for the full
phase ��r , t�=��r�t−��r�,

��r,t� =
��r�
�w

	1 −
4w2

3��r��w −
�2�r�
w2 �
t + �0�r� . �6�

Here all the parameters are represented via original ones, i.e.,
via w and ��r�, which characterize the experimental condi-
tions. Thus, the inhomogeneous influx ��r� which is pre-
sented as parabola with minimum leads to two modifications
in the phase growth: �1� it delays the growth of the speed of
phase growth; �2� this delay is sufficiently smaller in the
center of interval compared with values near the border.
Therefore, if the initial phase distribution �0�r� and the in-
flux ��r� have contradistinct extrema in the center, then the

FIG. 3. Time space plots of traveling waves for D=2.5	10−3

and different initial conditions. Left: A�r ,0�=1, ��r ,0�=1. Right:
A�r ,0�=1, ��r ,0�=2�r�r−1�.
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FIG. 4. Flip of the phase curve. The space distribution is pre-
sented at the following time steps: 0 �bold solid line�, 10 �dashed-
dotted line�, 34 �dashed line�, and 49 �thin solid line�.
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distribution of the phase growth speed will be sufficiently
curved due to the damping near the borders. Such a shape
results in a flip of the phase growth distribution.

Note that the different behavior of the growth of the phase
is determined by the value of the amplitude. In particular, in
the considered case of the formed limit-cycle motion �the
maximal possible amplitude�, this difference is so big that
the phase flip occurs during times comparable with one pe-
riod of oscillations. In experiments the change in wave
propagation direction occurs after a certain number of peri-
ods of oscillations �9�. Therefore we need to take into ac-
count Eq. �3� which describes the growth of amplitude equa-
tion. The relatively slow growth of these solutions provides a
necessary delay of the phase flip that leads to the change in
the wave propagation direction. This situation is presented in
Fig. 3 �right� where initially inwardly propagating waves
change their direction. Such changes will take place before
the distributed oscillators reach their limit cycles �see times
in Fig. 4 and compare with the amplitude values in Figs. 1
and 2�.

III. DISCUSSION AND CONCLUSION

Thus, we have found that the Selkov model with inhomo-
geneous influx describes the dynamical phenomena observed
in the experiment. As it was shown in experiment, the waves
propagate initially from borders to center �inward waves� and
then, after 4–7 h, could change their direction �to outward
waves�; however the substrate influx and product degrada-
tion rates do not change during the experiment. For this rea-
son present phenomenon differs from the situation observed
in the BZ reaction �10�. Therefore, it cannot be explained in
the frame of the theory suggested in work of Shao et al. �11�,
which considers the change in key influx parameter as the
origin of the wave or antiwave behavior. Additionally, in the
experimental cases described in �5,8,9�, the diffusion of such

big molecules as adenosine-5’-triphosphate �ATP�
�substrate� and adenosine diphosphate �ADP� �product� is
very slow in the gel dense structure. Therefore, we can sup-
pose that diffusion processes play a small role in the wave-
generating sources compared with the situation considered in
�11�. We can explain the wave generation and reversal by our
analysis of the initial condition influence. Usually, yeast ex-
tracts contain substrates, coenzymes, and enzymes for glyco-
lysis pathway. It means only that the initial mixture should
be described by a nonuniform initial distribution. We have
shown that the phase shift is determined by the initial distri-
bution of metabolites. Clearly, this function could be suffi-
ciently large even for very small initial concentrations �and,
correspondingly, the amplitudes in Eqs. �5� and �6��. Thus,
the time of wave change direction could be regulated by the
adjustment of the coefficients �0 and �b in the influx func-
tion. For example, for the used parameters �see Fig. 3 �right��
the critical time is around 2 h, and for �0=2.82, �b=2.81 it
will grow up to 9 h. We have showed that the properties of a
wave propagation are not determined by diffusion processes
but by speed of individual oscillator rotation in a phase
plane. We can expect that the supposed distribution of influx
and initial conditions can be defined by the inhomogeneity of
diffusion coefficients or inhomogeneity of boundaries. This
possible situation can correspond to the experimental condi-
tions, where gel has a dense structure and enzymes of reac-
tion could clog the gel pores. Finally, we can note that inho-
mogeneity may also affect on the break of axially
symmetrical waves into spirals as it was found in some
experiments �9�.
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